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a  b  s  t  r  a  c  t

Microwave  dielectric  ceramics  with  the  composition  of (1−x)Li2Zn3Ti4O12 (LZT)–xTiO2 (0  ≤ x <  1)  were
prepared  by  the  solid-state  reaction  method.  The  crystal  structures  were  determined  by  X-ray  diffraction.
(1−x)LZT–xTiO2 solid  solutions  show  a cubic  structure  [P4332  (2 1  2)]  similar  to  Zn2Ti3O8 in the  range
of  0.2  ≤ x  ≤0.4.  When  the  x value  reaches  0.6,  the  rutile  TiO2 phase  appears.  The  microwave  dielectric
properties  were  studied  by  a Network  Analyzer.  The  relative  permittivity  (εr) and  temperature  coefficients
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of resonant  frequency  (�f)  were  adjusted  with  increasing  x values.  Especially,  0.4LZT–0.6TiO2 ceramic
exhibits  good  microwave  dielectric  properties  with  a  εr of 25.1,  a high  Q  ×  f of  62,000  GHz and  a  near-zero
�f of  −5.2 ppm/◦C.

© 2011 Elsevier B.V. All rights reserved.
ubic structure

. Introduction

The recent progress in microwave telecommunication, satellite
roadcasting and intelligent transport systems (ITS) has resulted

n an increasing demand for dielectric resonators (DRs). Dielectric
esonators generally consist of a puck of ceramic that has high per-
ittivity and low dissipation factor. The resonant frequency of a DR

s determined by the overall physical dimensions of the puck, the
ermittivity of the material and its immediate surroundings. The
ey properties are high-quality factor (Q), high relative permittivity
εr) and near-zero temperature coefficient of resonant frequency
�f). However, an optimal DR that satisfies these three properties
imultaneously is difficult to achieve in a particular material [1–3].

Recently, a number of microwave dielectric ceramics have been
eveloped, such as Ca(B′

1/2Nb1/2)O3 [B′ = La, Pr, Nd, Sm,  Eu, Gd, Tb, Y,
r, Yb and In] [4] and MAl2O4 (M = Zn and Mg)  [5–7]. However, most
f these ceramics have a large negative �f value. Generally, there
re two methods to design a material with a stable temperature
oefficient: (1) composite materials by mixing component materi-
ls [8] with negative and positive �f values, such as Zn2Te3O8–TiO2
9],  Zn2TiO4–TiO2 [10], Ca2P2O7–TiO2 [11], CaWO4–TiO2 [12],
g4Ta2O9–TiO2 [13] and LiNb3O8–TiO2 [14]. (2) Formation of
olid solutions, such as complex perovskites [15] and other sys-
ems [16–17].  More recently, Wu  et al. [18] reported temperature

∗ Corresponding author. Tel.: +86 773 5896435.
E-mail address: zhouhuanfu@163.com (H. Zhou).

925-8388/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jallcom.2011.11.116
stable microwave dielectric ceramic 0.3Li2TiO3–0.7Li(Zn0.5Ti1.5)O4
with ultra-low dielectric loss by composite method. In our
recent investigation, ZnLi2/3Ti4/3O4 ceramic presents excellent
microwave dielectric properties with εr = 20.6, Q × f = 106,700 GHz,
�f = −48 ppm/◦C[19]. In order to enhance the εr and �f values, rutile
TiO2 (εr = 105, Q × f = 46,000 GHz, �f = +465 ppm/◦C) [20] was added
to the LZT ceramic. In this work, sintering characteristics, phase
structure and microwave dielectric properties of (1−x)LZT–xTiO2
ceramics have been investigated.

2. Experimental

In order to synthesize LZT powders, high-purity powders of Li2CO3 (≥99%, Guo-
Yao  Co. Ltd., Shanghai, China), ZnO (≥99%, Guo-Yao Co. Ltd., Shanghai, China) and
TiO2 (≥99%, Guo-Yao Co. Ltd., Shanghai, China) were weighed according to the molar
ratio of 1:3:4. The mixture was  ball-milled in a polyethylene bottle with ZrO2 media
for 4 h using alcohol as a medium. The wet mixture was rapidly dried and then cal-
cined at 950 ◦C for 6 h. Afterward, mixtures of the (1−x)LZT–xTiO2 powders (x = 0.2,
0.4,  0.6 and 0.8) were ball-milled in a polyethylene bottle with ZrO2 media for 4 h
using alcohol as a medium. The milled powders were dried, granulated and pressed
into cylinders of 12 mm in diameter and 6–8 mm in height by uniaxial pressing
under a pressure of 200 MPa. The samples were heated at 550 ◦C for 4 h to remove
the organic binder and then sintered at 1050–1175 ◦C for 4 h at a heating rate of
5 ◦C/min.

The bulk density of the sintered samples was measured by Archimedes method.
The phase structure of samples was  investigated by using X-ray diffractometer (XRD)
(CuK�1, 1.54059 Å, Model X’Pert PRO, PANalytical, Almelo, Holland). The surface

micrographs of the samples were examined by using a scanning electron microscope
(SEM, Model JSM6380-LV, JEOL, Tokyo, Japan).

Dielectric behaviors in microwave frequency were measured by the TE01�

shielded cavity method using a Network Analyzer (Model N5230A, Agilent Co., Palo
Alto,  CA) and a temperature chamber (Delta 9039, Delta Design, San Diego, CA).

dx.doi.org/10.1016/j.jallcom.2011.11.116
http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:zhouhuanfu@163.com
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ig. 1. XRD profiles for the (1−x)LZT–xTiO2 ceramics sintered at 1075 ◦C for 4 h: (a)
 = 0, (b) x = 0.2, (c) x = 0.4, (d) x = 0.6 and (e) x = 0.8.

he temperature coefficients of resonant frequency �f values were calculated by the
ormula as in the following:

f = fT − f0
f0(T − T0)

(1)

here fT, f0 were the resonant frequencies at the measuring temperature T (85 ◦C)
nd T0 (25 ◦C), respectively.

. Results and discussion

Fig. 1 shows the X-ray diffraction (XRD) profiles of the
1−x)LZT–xTiO2 (x = 0, 0.2, 0.4, 0.6 and 0.8) samples sintered at
075 ◦C for 4 h. Pure LZT has a cubic structure [Fd-3m  (2 2 7)] similar

o MgFe2O4 with lattice parameters of a = 8.401(7) ´̊A,  V = 593.07 ´̊A3,
 = 4.43 g/cm3 and Z = 8 (Z denotes the number of unit cell molecules

n a unit cell) [19]. However, as x value is over 0.2, the added
eflection peaks with (2 1 0), (2 1 1), (4 2 1), (4 3 2) and (5 2 1) show
ower symmetry of crystal structure. (1−x)LZT–xTiO2 solid solu-
ion (0.2 ≤ x ≤0.4) has a cubic structure [P4332 (2 1 2)] similar to
n2Ti3O8 (JCPDS #087-1781). At the region of x ≥ 0.6, rutile TiO2
hase (JCPDS #071-0650) was observed, and the amount of rutile
iO2 phase increases with increasing the x values. The phase com-
osition, crystallographic parameters of (1−x)LZT–xTiO2 (0 ≤ x < 1)
eramics sintered at 1075 ◦C are shown in Table 1. The structure
hanges from [Fd-3m  (2 2 7)] to [P4332 (2 1 2)], and the lattice

onstant decreased from 8.401(7) ´̊A  to 8.393(6) ´̊A. However, the cal-
ulated density increased from 4.43 g/cm3 (at x = 0) to 4.84 g/cm3

at x = 0.4), which was attributed to the trace change in cell volume
nd the increase of molar mass caused by that Ti4+ in titanium diox-

de entered the unit cell. At the region of x ≥ 0.6, rutile TiO2 phase

as observed, and the mass percentage of the rutile TiO2 phase
ncreased from 12.5% (at x = 0.6) to 30.6% (at x = 0.8) (calculated via
he RIR method in the jade 6.0 software).

able 1
hase composition and crystallographic parameters of (1−x)LZT–xTiO2 ceramics sintered

x values Phase composition Secondary phase wt  (%) Crystallog

Lattice co

x = 0 Single – 8.401(7) 

x  = 0.2 Single – 8.393(6) 

x  = 0.4 Single – 8.395(8) 

x  = 0.6 Mixture TiO2: 12.5% – 

x  = 0.8 Mixture TiO2: 30.6% – 
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The microstructure of the (1−x)LZT–xTiO2 ceramics was
observed using scanning electron microscopy (SEM). Fig. 2 illus-
trates SEM images of the (1−x)LZT–xTiO2 ceramics sintered at
1075 ◦C. The well-densified microstructures were obtained and
little porosity was observed in the sintered samples. The pure
LZT ceramic [Fig. 2(a)] has a dense microstructure with the aver-
age grain size of ∼50 �m.  The grain size becomes smaller with
increasing TiO2 contents, which may  be contributed by its high sin-
tering temperature (above 1300 ◦C). In particular, a small amount
of tetragonal rutile TiO2 were firstly observed in Fig. 2(d) (at x = 0.6),
which agree well with the analysis of X-ray diffraction patterns. As
the x value is 0.8, the rod-like TiO2 grains with a width size of about
2 �m and square grains with a size of about more than 5 �m were
observed [as shown in Fig. 2(e)].

The bulk density, Q × f values and relative permittivity of the
(1−x)LZT–xTiO2 samples as a function of the sintering tempera-
tures are shown in Fig. 3. The bulk densities initially increase with
increasing x values from 0.2 to 0.6 and then slightly decrease with
further increasing the x values. The increase of the bulk densities
can be explained by the produce of phase with higher crystallo-
graphic calculated density (as shown in Table 1). In addition, the
decrease of the densities may  be the emergence of excessive TiO2
with relatively lower density (4.25 g/cm3) as well as the reduction
of the sintering characteristics of the LZT ceramics due to the high
sintering temperature of TiO2 (above 1300 ◦C). It is noticeable that
the (1−x)LZT−xTiO2 ceramics have a relatively wide sintering tem-
perature range (above 100 ◦C), which can be illustrated by the trace
change in densities for the whole sintering temperatures. The rel-
ative permittivity increases with increasing x values. The effect of
sintering temperature on the permittivity is not obvious for the
same composition, which is consistent with the little change of the
bulk density of the (1−x)LZT−xTiO2 ceramics for the same x value at
different temperatures. The Q × f values decreased with increasing
x values when the sintering temperatures are lower than 1075 ◦C.
However, the Q × f values initially decreased between x = 0.2 and
0.6 and then increased between x = 0.6 and 0.8 when the sintering
temperatures are higher than 1100 ◦C. At the region of 0.4 ≤ x ≤ 0.6,
the decrease of the Q × f values at different sintering temperature
was  resulted from the produce of the TiO2 phase. Overall, the opti-
mal  sintering temperature of the (1−x)LZT–xTiO2 ceramics (x ≤ 0.6)
is 1075 ◦C.

Fig. 4 shows the temperature coefficients of resonant frequency
�f of the (1−x)LZT–xTiO2 ceramics sintered at 1075 ◦C, insert shows
the �f values of the 0.4LZT–0.6TiO2 ceramics as a function of the sin-
tering temperatures. The �f values increase slightly in the x range
of 0.2 ≤ x ≤0.4, which may  be attributed to the trace change in
the crystal structure. However, due to the secondary phase TiO2,
the �f values shift sharply in the range of 0.4 < x ≤ 0.8. Especially,
when x value reach to 0.6, the �f values is near to zero, which is
attributed to appropriate amount of TiO2 with very high �f value
(∼+465 ppm/◦C) [20]. The �f values of the 0.4LZT–0.6TiO2 ceram-
keep relatively steady. Hence, the 0.4LZT–0.6TiO2 ceramics sintered
at 1075 ◦C have excellent microwave dielectric properties with a εr

of 25.1, a high Q × f of 62,000 GHz and a �f of −5.2 ppm/◦C.

 at 1075 ◦C.

raphic parameters

nstant, a ( ´̊A) Volume of cell, V ( ´̊A3) Calculated density, � (g/cm3)

593.07 4.43
591.35 4.59
591.82 4.84
– –
– –
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Fig. 2. The SEM micrographs of the (1−x)LZT–xTiO2 ceramics sintered at 1075 ◦C: (a) x = 0, (b) x = 0.2, (c) x = 0.4, (d) x = 0.6 and (e) x = 0.8.

Fig. 3. The bulk density (a), Q × f (b) and relative permittivity (c) of (1−x)LZT–xTiO2

ceramics as a function of the sintering temperature.

Fig. 4. The �f values of (1−x)LZT–xTiO2 ceramics sintered at 1075 ◦C as a function

of  the TiO2 content. The inset shows �f values of the 0.4LZT–0.6TiO2 ceramics as a
function of the sintering temperatures.
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. Conclusion

In this study, the structure and microwave dielectric properties
f the (1−x)LZT–xTiO2 ceramics were investigated. (1−x)LZT–xTiO2
x ≥ 0.2) has a cubic structure [P4332 (2 1 2)] similar to Zn2Ti3O8,
he rutile TiO2 phase appeared as x values are over 0.6.
1−x)LZT–xTiO2 ceramics exhibited good dielectric properties.
specially, 0.4LZT–0.6TiO2 ceramic has excellent microwave
ielectric properties with a εr of 25.1, a high Q × f of 62,000 GHz
nd a near-zero �f of −5.2 ppm/◦C.
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